Part Number Hot Search : 
D30PF03 ULN203 TOP255PN TC4052BF SN54S124 C520D 2SA19 1N540
Product Description
Full Text Search
 

To Download 22V10 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Specifications GAL22V10
GAL22V10
High Performance E2CMOS PLD Generic Array LogicTM Features
* HIGH PERFORMANCE E2CMOS(R) TECHNOLOGY -- 4 ns Maximum Propagation Delay -- Fmax = 250 MHz -- 3.5 ns Maximum from Clock Input to Data Output -- UltraMOS(R) Advanced CMOS Technology * ACTIVE PULL-UPS ON ALL PINS
I
Functional Block Diagram
I/CLK
RESET
8 OLMC
I/O/Q
I
10 OLMC
I/O/Q
* COMPATIBLE WITH STANDARD 22V10 DEVICES -- Fully Function/Fuse-Map/Parametric Compatible with Bipolar and UVCMOS 22V10 Devices * 50% to 75% REDUCTION IN POWER VERSUS BIPOLAR -- 90mA Typical Icc on Low Power Device -- 45mA Typical Icc on Quarter Power Device * E2 CELL TECHNOLOGY -- Reconfigurable Logic -- Reprogrammable Cells -- 100% Tested/100% Yields -- High Speed Electrical Erasure (<100ms) -- 20 Year Data Retention * TEN OUTPUT LOGIC MACROCELLS -- Maximum Flexibility for Complex Logic Designs * PRELOAD AND POWER-ON RESET OF REGISTERS -- 100% Functional Testability * APPLICATIONS INCLUDE: -- DMA Control -- State Machine Control -- High Speed Graphics Processing -- Standard Logic Speed Upgrade * ELECTRONIC SIGNATURE FOR IDENTIFICATION ESCRIPTION
12
I
OLMC
I/O/Q
PROGRAMMABLE AND-ARRAY (132X44)
14 OLMC
I
I/O/Q
16 OLMC
I
I/O/Q
I
16 OLMC
I/O/Q
I
14 OLMC
I/O/Q
I
12 OLMC
I/O/Q
I
10 OLMC
I/O/Q
I
8 OLMC
I/O/Q
I
PRESET
Description
The GAL22V10, at 4ns maximum propagation delay time, combines a high performance CMOS process with Electrically Erasable (E2) floating gate technology to provide the highest performance available of any 22V10 device on the market. CMOS circuitry allows the GAL22V10 to consume much less power when compared to bipolar 22V10 devices. E2 technology offers high speed (<100ms) erase times, providing the ability to reprogram or reconfigure the device quickly and efficiently. The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. The GAL22V10 is fully function/fuse map/parametric compatible with standard bipolar and CMOS 22V10 devices. Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacture. As a result, Lattice Semiconductor delivers 100% field programmability and functionality of all GAL products. In addition, 100 erase/write cycles and data retention in excess of 20 years are specified.
Pin Configuration
DIP PLCC
I/CLK I/O/Q I/O/Q Vcc I I NC
I/CLK I I
25 I/O/Q I/O/Q
1
24
Vcc I/O/Q I/O/Q
4 I I I NC I I I 11 12
I I
2
28
26
5
I I I 6
7
23
I/O/Q NC
GAL 22V10
18
I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q
GAL22V10
9
Top View
14
GND NC
21
I/O/Q I/O/Q
I I I I I GND 12
16
I I/O/Q
19 18
I/O/Q
I/O/Q
13
I
Copyright (c) 2000 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com
August 2000
22V10_06
1
Specifications GAL22V10
GAL22V10 Ordering Information
Commercial Grade Specifications
Tpd (ns)
4 5
Tsu (ns)
2.5 3
Tco (ns)
3.5 4
Icc (mA)
140 140 150 GAL22V10D-4LJ GAL22V10D-5LJ GAL22V10C-5LJ GAL22V10D-7LP GAL22V10C-7LP
Ordering #
Package
28-Lead PLCC 28-Lead PLCC 28-Lead PLCC 24-Pin Plastic DIP 24-Pin Plastic DIP 28-Lead PLCC 24-Pin Plastic DIP 28-Lead PLCC 24-Pin Plastic DIP 28-Lead PLCC 24-Pin Plastic DIP 28-Lead PLCC 24-Pin Plastic DIP 28-Lead PLCC 24-Pin Plastic DIP 28-Lead PLCC 24-Pin Plastic DIP 28-Lead PLCC 24-Pin Plastic Dip 28-Pin PLCC
7.5
4.5 5 4.5 6.5
4.5 4.5 4.5 5
140 140 140 140 140
GAL22V10D-7LJ or GAL22V10C-7LJ GAL22V10B-7LP GAL22V10B-7LJ GAL22V10D-10QP GAL22V10D-10QJ GAL22V10D-10LP, GAL22V10C-10LP or GAL22V10B-10LP GAL22V10D-10LJ, GAL22V10C-10LJ or GAL22V10B-10LJ GAL22V10D-15QP or GAL22V10B-15QP GAL22V10D-15QJ or GAL22V10B-15QJ GAL22V10D-15LP or GAL22V10B-15LP GAL22V10D-15LJ or GAL22V10B-15LJ GAL22V10D-25QP or GAL22V10B-25QP GAL22V10D-25QJ or GAL22V10B-25QJ GAL22V10D-25LP or GAL22V10B-25LP GAL22V10D-25LJ or GAL22V10B-25LJ
10
7
7
55 55 130 130
15
10
8
55 55 130 130
25
15
15
55 55 90 90
Industrial Grade Specifications
Tpd (ns)
7.5
Tsu (ns)
5 4.5
Tco (ns)
4.5 4.5 7
Icc (mA)
160 160 160 160
Ordering #
GAL22V10D-7LPI or GAL22V10C-7LPI GAL22V10D-7LJI or GAL22V10C-7LJI GAL22V10D-10LPI or GAL22V10C-10LPI GAL22V10D-10LJI or GAL22V10C-10LJI GAL22V10D-15LPI or GAL22V10B-15LPI GAL22V10D-15LJI or GAL22V10B-15LJI GAL22V10D-20LPI or GAL22V10B-20LPI GAL22V10D-20LJI or GAL22V10B-20LJI GAL22V10D-25LPI or GAL22V10B-25LPI GAL22V10D-25LJI or GAL22V10B-25LJI
Package
24-Pin Plastic DIP 28-Lead PLCC 24-Pin Plastic DIP 28-Lead PLCC 24-Pin Plastic DIP 28-Lead PLCC 24-Pin Plastic DIP 28-Lead PLCC 24-Pin Plastic DIP 28-Lead PLCC
10
7
15
10
8
150 150
20
14
10
150 150
25
15
15
150 150
Part Number Description
XXXXXXXX _ XX X XX
GAL22V10D Device Name GAL22V10C GAL22V10B Speed (ns) L = Low Power Power Q = Quarter Power
Grade
Blank = Commercial I = Industrial
Package P = Plastic DIP J = PLCC
2
Specifications GAL22V10
Output Logic Macrocell (OLMC)
The GAL22V10 has a variable number of product terms per OLMC. Of the ten available OLMCs, two OLMCs have access to eight product terms (pins 14 and 23, DIP pinout), two have ten product terms (pins 15 and 22), two have twelve product terms (pins 16 and 21), two have fourteen product terms (pins 17 and 20), and two OLMCs have sixteen product terms (pins 18 and 19). In addition to the product terms available for logic, each OLMC has an additional product-term dedicated to output enable control. The output polarity of each OLMC can be individually programmed to be true or inverting, in either combinatorial or registered mode. This allows each output to be individually configured as either active high or active low. The GAL22V10 has a product term for Asynchronous Reset (AR) and a product term for Synchronous Preset (SP). These two product terms are common to all registered OLMCs. The Asynchronous Reset sets all registers to zero any time this dedicated product term is asserted. The Synchronous Preset sets all registers to a logic one on the rising edge of the next clock pulse after this product term is asserted. NOTE: The AR and SP product terms will force the Q output of the flip-flop into the same state regardless of the polarity of the output. Therefore, a reset operation, which sets the register output to a zero, may result in either a high or low at the output pin, depending on the pin polarity chosen.
AR
D Q CLK SP Q
4 TO 1 MUX
2 TO 1 MUX
GAL22V10 OUTPUT LOGIC MACROCELL (OLMC)
Output Logic Macrocell Configurations
Each of the Macrocells of the GAL22V10 has two primary functional modes: registered, and combinatorial I/O. The modes and the output polarity are set by two bits (SO and S1), which are normally controlled by the logic compiler. Each of these two primary modes, and the bit settings required to enable them, are described below and on the following page. REGISTERED In registered mode the output pin associated with an individual OLMC is driven by the Q output of that OLMC's D-type flip-flop. Logic polarity of the output signal at the pin may be selected by specifying that the output buffer drive either true (active high) or inverted (active low). Output tri-state control is available as an individual product-term for each OLMC, and can therefore be defined by a logic equation. The D flip-flop's /Q output is fed back into the AND array, with both the true and complement of the feedback available as inputs to the AND array. NOTE: In registered mode, the feedback is from the /Q output of the register, and not from the pin; therefore, a pin defined as registered is an output only, and cannot be used for dynamic I/O, as can the combinatorial pins. COMBINATORIAL I/O In combinatorial mode the pin associated with an individual OLMC is driven by the output of the sum term gate. Logic polarity of the output signal at the pin may be selected by specifying that the output buffer drive either true (active high) or inverted (active low). Output tri-state control is available as an individual product-term for each output, and may be individually set by the compiler as either "on" (dedicated output), "off" (dedicated input), or "product-term driven" (dynamic I/O). Feedback into the AND array is from the pin side of the output enable buffer. Both polarities (true and inverted) of the pin are fed back into the AND array.
3
Specifications GAL22V10
Registered Mode
AR
AR
D
Q
D
Q
CLK SP
Q
CLK SP
Q
ACTIVE LOW S0 = 0 S1 = 0 S0 = 1 S1 = 0
ACTIVE HIGH
Combinatorial Mode
ACTIVE LOW S0 = 0 S1 = 1 S0 = 1 S1 = 1
ACTIVE HIGH
4
Specifications GAL22V10
GAL22V10 Logic Diagram / JEDEC Fuse Map
DIP (PLCC) Package Pinouts
1 (2)
0
0000 0044 . . . 0396
4
8
12
16
20
24
28
32
36
40
ASYNCHRONOUS RESET (TO ALL REGISTERS)
8
OLMC
S0 5808 S1 5809
23 (27)
0440 . . . . 0880
10
OLMC
S0 5810 S1 5811
22 (26)
2 (3)
0924 . . . . . 1452
12
OLMC
S0 5812 S1 5813
21 (25)
3 (4)
1496 . . . . . . 2112
14
OLMC
S0 5814 S1 5815
20 (24)
4 (5)
2156 . . . . . . . 2860
16
OLMC
S0 5816 S1 5817
19 (23)
5 (6)
2904 . . . . . . . 3608
16
OLMC
S0 5818 S1 5819
18 (21)
6 (7)
3652 . . . . . . 4268
14
OLMC
S0 5820 S1 5821
17 (20)
7 (9)
4312 . . . . . 4840
12
OLMC
S0 5822 S1 5823
16 (19)
8 (10)
4884 . . . . 5324
10
OLMC
S0 5824 S1 5825
15 (18)
9 (11)
5368 . . . 5720
8
OLMC
S0 5826 S1 5827
14 (17)
10 (12)
5764
11 (13)
5828, 5829 ...
M S B L S B
SYNCHRONOUS PRESET (TO ALL REGISTERS)
13 (16)
Electronic Signature
... 5890, 5891
Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0
5
Specifications GAL22V10D Specifications GAL22V10
Absolute Maximum Ratings1
Supply voltage VCC ....................................... -0.5 to +7V Input voltage applied ........................... -2.5 to VCC +1.0V Off-state output voltage applied........... -2.5 to VCC +1.0V Storage Temperature.................................. -65 to 150C Ambient Temperature with Power Applied ......................................... -55 to 125C
1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).
Recommended Operating Conditions
Commercial Devices: Ambient Temperature (TA) ............................. 0 to +75C Supply voltage (VCC) with Respect to Ground ..................... +4.75 to +5.25V Industrial Devices: Ambient Temperature (TA) ............................ -40 to 85C Supply voltage (VCC) with Respect to Ground ..................... +4.50 to +5.50V
DC Electrical Characteristics
Over Recommended Operating Conditions (Unless Otherwise Specified) SYMBOL PARAMETER Input Low Voltage Input High Voltage Input or I/O Low Leakage Current Input or I/O High Leakage Current Output Low Voltage Output High Voltage Low Level Output Current High Level Output Current Output Short Circuit Current VCC = 5V VOUT = 0.5V TA = 25C 0V VIN VIL (MAX.) 3.5V VIN VCC IOL = MAX. Vin = VIL or VIH IOH = MAX. Vin = VIL or VIH CONDITION MIN.
Vss - 0.5
TYP.3 -- -- -- -- -- -- -- -- --
MAX. 0.8 Vcc+1 -100 10 0.4 -- 16 -3.2 -130
UNITS V V A A V V mA mA mA
VIL VIH IIL1 IIH VOL VOH IOL IOH IOS2
2.0 -- -- -- 2.4 -- -- -30
COMMERCIAL ICC Operating Power
Supply Current
VIL = 0.5V VIH = 3.0V ftoggle = 15MHz Outputs Open
L-4/-5/-7 L-10 L-15/-25 Q-10/-15/-25
-- -- -- --
90 90 75 45
140 130 90 55
mA mA mA mA
INDUSTRIAL ICC Operating Power
Supply Current
VIL = 0.5V VIH = 3.0V ftoggle = 15MHz Outputs Open
L-7/-10 L-15/-20/-25
-- --
90 75
160 130
mA mA
1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information. 2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester ground degradation. Characterized but not 100% tested. 3) Typical values are at Vcc = 5V and TA = 25 C
6
Specifications GAL22V10D Specifications GAL22V10
AC Switching Characteristics
Over Recommended Operating Conditions
COM PARAM TEST COND.1 COM COM/IND
DESCRIPTION Input or I/O to Combinatorial Output Clock to Output Delay Clock to Feedback Delay Setup Time, Input or Fdbk before Clk Hold Time, Input or Fdbk after Clk Maximum Clock Frequency with External Feedback, 1/(tsu + tco) Maximum Clock Frequency with Internal Feedback, 1/(tsu + tcf) Maximum Clock Frequency with No Feedback Clock Pulse Duration, High Clock Pulse Duration, Low Input or I/O to Output Enabled Input or I/O to Output Disabled Input or I/O to Asynch. Reset of Reg. Asynch. Reset Pulse Duration Asynch. Reset to Clk Recovery Time Synch. Preset to Clk Recovery Time 1 1 -- 2.5 0 167
-4 4 3.5 2.5 -- -- -- 1 1 -- 3 0
-5 5 4 3 -- -- -- 1 1 -- 4.5 0 111
-7 7.5 4.5 3 -- -- --
UNITS ns ns ns ns ns MHz
MIN. MAX. MIN. MAX. MIN. MAX.
tpd tco tcf2 tsu th
A A -- -- -- A
142.8
fmax3
A A
200 250
-- --
166 200
-- --
133 166
-- --
MHz MHz
twh twl ten tdis tar tarw tarr tspr
-- -- B C A -- -- --
2 2 1 1 1 4.5 3 3
-- -- 5 5 4.5 -- -- --
2.5 2.5 1 1 1 4.5 4 4
-- -- 6 5.5 5.5 -- -- --
3 3 1 1 1 7 5 5
-- -- 7.5 7.5 9 -- -- --
ns ns ns ns ns ns ns ns
1) Refer to Switching Test Conditions section. 2) Calculated from fmax with internal feedback. Refer to fmax Description section. 3) Refer to fmax Description section. Characterized initially and after any design or process changes that may affect these parameters.
Capacitance (TA = 25C, f = 1.0 MHz)
SYMBOL CI CI/O PARAMETER Input Capacitance I/O Capacitance MAXIMUM* 8 8 UNITS pF pF TEST CONDITIONS VCC = 5.0V, VI = 2.0V VCC = 5.0V, VI/O = 2.0V
*Characterized but not 100% tested.
7
Specifications GAL22V10D Specifications GAL22V10
AC Switching Characteristics
Over Recommended Operating Conditions
COM / IND PARAM. TEST COND.1 COM / IND IND COM / IND
DESCRIPTION Input or I/O to Comb. Output Clock to Output Delay Clock to Feedback Delay Setup Time, Input or Fdbk before Clk Hold Time, Input or Fdbk after Clk Maximum Clock Frequency with External Feedback, 1/(tsu + tco) Maximum Clock Frequency with Internal Feedback, 1/(tsu + tcf) Maximum Clock Frequency with No Feedback Clock Pulse Duration, High Clock Pulse Duration, Low Input or I/O to Output Enabled Input or I/O to Output Disabled Input or I/O to Asynch. Reset of Reg. Asynch. Reset Pulse Duration Asynch. Reset to Clk Recovery Time Synch. Preset to Clk Recovery Time 1 1 -- 6 0
-10
-15
-20
-25 UNITS ns ns ns ns ns MHz
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX. 10 7 2.5 -- -- -- 3 2 -- 10 0 55.5 15 8 2.5 -- -- -- 3 2 -- 12 0 41.6 20 10 8 -- -- -- 3 2 -- 15 0 33.3 25 15 13 -- -- --
tpd tco tcf2 tsu th
A A -- -- -- A
83.3
fmax3
A A
110 125
-- --
80 83.3
-- --
45.4 50
-- --
35.7 38.5
-- --
MHz MHz
twh twl ten tdis tar tarw tarr tspr
-- -- B C A -- -- --
4 4 1 1 1 8 8 8
-- -- 10 9 13 -- -- --
6 6 3 3 3 15 10 10
-- -- 15 15 20 -- -- --
10 10 3 3 3 20 20 14
-- -- 20 20 25 -- -- --
13 13 3 3 3 25 25 15
-- -- 25 25 25 -- -- --
ns ns ns ns ns ns ns ns
1) Refer to Switching Test Conditions section. 2) Calculated from fmax with internal feedback. Refer to fmax Description section. 3) Refer to fmax Description section.
Capacitance (TA = 25C, f = 1.0 MHz)
SYMBOL CI CI/O PARAMETER Input Capacitance I/O Capacitance MAXIMUM* 8 8 UNITS pF pF TEST CONDITIONS VCC = 5.0V, VI = 2.0V VCC = 5.0V, VI/O = 2.0V
*Characterized but not 100% tested.
8
Specifications GAL22V10C Specifications GAL22V10
Absolute Maximum Ratings1
Supply voltage VCC ....................................... -0.5 to +7V Input voltage applied ........................... -2.5 to VCC +1.0V Off-state output voltage applied .......... -2.5 to VCC +1.0V Storage Temperature ................................. -65 to 150C Ambient Temperature with Power Applied ......................................... -55 to 125C
1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).
Recommended Operating Conditions
Commercial Devices: Ambient Temperature (TA) ............................. 0 to +75C Supply voltage (VCC) with Respect to Ground ..................... +4.75 to +5.25V Industrial Devices: Ambient Temperature (TA) ............................ -40 to 85C Supply voltage (VCC) with Respect to Ground ..................... +4.50 to +5.50V
DC Electrical Characteristics
Over Recommended Operating Conditions (Unless Otherwise Specified) SYMBOL PARAMETER Input Low Voltage Input High Voltage Input or I/O Low Leakage Current Input or I/O High Leakage Current Output Low Voltage Output High Voltage Low Level Output Current High Level Output Current Output Short Circuit Current VCC = 5V VOUT = 0.5V TA = 25C 0V VIN VIL (MAX.) 3.5V VIN VCC IOL = MAX. Vin = VIL or VIH IOH = MAX. Vin = VIL or VIH CONDITION MIN.
Vss - 0.5
TYP.3 -- -- -- -- -- -- -- -- --
MAX. 0.8 Vcc+1 -100 10 0.5 -- 16 -3.2 -130
UNITS V V A A V V mA mA mA
VIL VIH IIL1 IIH VOL VOH IOL IOH IOS2
2.0 -- -- -- 2.4 -- -- -30
COMMERCIAL ICC Operating Power Supply Current
VIL = 0.5V VIH = 3.0V ftoggle = 15MHz Outputs Open
L-5 L-7 L-10
-- -- --
90 90 90
150 140 130
mA mA mA
INDUSTRIAL ICC Operating Power Supply Current
VIL = 0.5V VIH = 3.0V ftoggle = 15MHz Outputs Open
L-7/-10
--
90
160
mA
1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information. 2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester ground degradation. Characterized but not 100% tested. 3) Typical values are at Vcc = 5V and TA = 25 C
9
Specifications GAL22V10C Specifications GAL22V10
AC Switching Characteristics
Over Recommended Operating Conditions
COM PARAM TEST COND.1 COM/IND COM/IND COM IND
DESCRIPTION Input or I/O to Combinatorial Output Clock to Output Delay Clock to Feedback Delay Setup Time, Input or Fdbk before Clk Hold Time, Input or Fdbk after Clk Maximum Clock Frequency with External Feedback, 1/(tsu + tco) Maximum Clock Frequency with Internal Feedback, 1/(tsu + tcf) Maximum Clock Frequency with No Feedback Clock Pulse Duration, High Clock Pulse Duration, Low Input or I/O to Output Enabled Input or I/O to Output Disabled Input or I/O to Asynch. Reset of Reg. Asynch. Reset Pulse Duration Asynch. Reset to Clk Recovery Time Synch. Preset to Clk Recovery Time 1 1 -- 3 0
-5
-7 (PLCC)
-7 (PDIP)
-10
-10 UNITS ns ns ns ns ns MHz
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX. 5 4 3 -- -- -- 1 1 -- 4.5 0 111 7.5 4.5 3 -- -- -- 1 1 -- 5 0 105 7.5 4.5 3 -- -- -- 3 2 -- 7 0 71.4 10 7 2.5 -- -- -- 1 1 -- 7 0 71.4 10 7 2.5 -- -- --
tpd tco tcf2 tsu th
A A -- -- -- A
142.8
fmax3
A A
166 200
-- --
133 166
--
125
-- --
105 105
-- --
105 105
-- --
MHz MHz
-- 142.8
twh twl ten tdis tar tarw tarr tspr
-- -- B C A -- -- --
2.5 2.5 1 1 1 5.5 4 4
-- -- 6 6 5.5 -- -- --
3 3 1 1 1 7 5 5
-- -- 7.5 7.5 9 -- -- --
3.5 3.5 1 1 1 7 5 5
-- -- 7.5 7.5 9 -- -- --
4 4 3 3 3 8 8 10
-- -- 10 9 13 -- -- --
4 4 1 1 1 8 8 10
-- -- 10 9 13 -- -- --
ns ns ns ns ns ns ns ns
1) Refer to Switching Test Conditions section. 2) Calculated from fmax with internal feedback. Refer to fmax Description section. 3) Refer to fmax Description section. Characterized initially and after any design or process changes that may affect these parameters.
Capacitance (TA = 25C, f = 1.0 MHz)
SYMBOL CI CI/O PARAMETER Input Capacitance I/O Capacitance MAXIMUM* 8 8 UNITS pF pF TEST CONDITIONS VCC = 5.0V, VI = 2.0V VCC = 5.0V, VI/O = 2.0V
*Characterized but not 100% tested.
10
Specifications GAL22V10B Specifications GAL22V10
Absolute Maximum Ratings1
Supply voltage VCC ....................................... -0.5 to +7V Input voltage applied ........................... -2.5 to VCC +1.0V Off-state output voltage applied .......... -2.5 to VCC +1.0V Storage Temperature ................................. -65 to 150C Ambient Temperature with Power Applied ......................................... -55 to 125C
1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).
Recommended Operating Conditions
Commercial Devices: Ambient Temperature (TA) ............................. 0 to +75C Supply voltage (VCC) with Respect to Ground ..................... +4.75 to +5.25V Industrial Devices: Ambient Temperature (TA) ............................ -40 to 85C Supply voltage (VCC) with Respect to Ground ..................... +4.50 to +5.50V
DC Electrical Characteristics
Over Recommended Operating Conditions (Unless Otherwise Specified) SYMBOL PARAMETER Input Low Voltage Input High Voltage Input or I/O Low Leakage Current Input or I/O High Leakage Current Output Low Voltage Output High Voltage Low Level Output Current High Level Output Current Output Short Circuit Current VCC = 5V VOUT = 0.5V TA = 25C 0V VIN VIL (MAX.) 3.5V VIN VCC IOL = MAX. Vin = VIL or VIH IOH = MAX. Vin = VIL or VIH CONDITION MIN.
Vss - 0.5
TYP.3 -- -- -- -- -- -- -- -- --
MAX. 0.8 Vcc+1 -100 10 0.5 -- 16 -3.2 -130
UNITS V V A A V V mA mA mA
VIL VIH IIL1 IIH VOL VOH IOL IOH IOS2
2.0 -- -- -- 2.4 -- -- -30
COMMERCIAL ICC Operating Power
Supply Current
VIL = 0.5V VIH = 3.0V ftoggle = 15MHz Outputs Open
L-7 L-10/-15 L-25 Q-15/-25
-- -- -- --
90 90 75 45
140 130 90 55
mA mA mA mA
INDUSTRIAL ICC Operating Power
Supply Current
VIL = 0.5V VIH = 3.0V ftoggle = 15MHz Outputs Open
L-15/-20/-25
--
90
150
mA
1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information. 2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester ground degradation. Characterized but not 100% tested. 3) Typical values are at Vcc = 5V and TA = 25 C
11
Specifications GAL22V10B Specifications GAL22V10
AC Switching Characteristics AC SWITCHING CHARACTERISTICS
Over Recommended Operating Conditions
COM PARAM. TEST COND.1 COM COM / IND IND COM / IND
DESCRIPTION Input or I/O to Comb. Output Clock to Output Delay Clock to Feedback Delay 3 2 --
-7
-10
-15
-20
-25 UNITS ns ns ns ns ns ns MHz
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX. 7.5 5 2.5 -- -- -- -- 3 2 -- 7 10 0 71.4 10 7 2.5 -- -- -- -- 3 2 -- 10 10 0 55.5 15 8 2.5 -- -- -- -- 3 2 -- 14 14 0 41.6 20 10 8 -- -- -- -- 3 2 -- 15 15 0 33.3 25 15 13 -- -- -- --
tpd tco tcf2 tsu1 tsu2 th
A A -- -- -- -- A
Setup Time, Input or Fdbk before Clk 6.5 Setup Time, SP before Clock Hold Time, Input or Fdbk after Clk Maximum Clock Frequency with External Feedback, 1/(tsu + tco) Maximum Clock Frequency with Internal Feedback, 1/(tsu + tcf) Maximum Clock Frequency with No Feedback Clock Pulse Duration, High Clock Pulse Duration, Low Input or I/O to Output Enabled Input or I/O to Output Disabled Input or I/O to Asynch. Reset of Reg. Asynch. Reset Pulse Duration Asynch. Reset to Clk Recovery Time Synch. Preset to Clk Recovery Time 10 0 87
fmax3
A A
111 111
-- --
105 105
-- --
80 83.3
-- --
45.4 50
-- --
35.7 38.5
-- --
MHz MHz
twh twl ten tdis tar tarw tarr tspr
-- -- B C A -- -- --
4 4 3 3 3 8 8 10
-- -- 8 8 13 -- -- --
4 4 3 3 3 8 8 10
-- -- 10 9 13 -- -- --
6 6 3 3 3 15 10 10
-- -- 15 15 20 -- -- --
10 10 3 3 3 20 20 14
-- -- 20 20 25 -- -- --
13 13 3 3 3 25 25 15
-- -- 25 25 25 -- -- --
ns ns ns ns ns ns ns ns
1) Refer to Switching Test Conditions section. 2) Calculated from fmax with internal feedback. Refer to fmax Description section. 3) Refer to fmax Description section.
Capacitance (TA = 25C, f = 1.0 MHz)
SYMBOL CI CI/O PARAMETER Input Capacitance I/O Capacitance MAXIMUM* 8 8 UNITS pF pF TEST CONDITIONS VCC = 5.0V, VI = 2.0V VCC = 5.0V, VI/O = 2.0V
*Characterized but not 100% tested.
12
Specifications GAL22V10
Switching Waveforms
INPUT or I/O FEEDBACK
VALID INPUT
INPUT or I/O FEEDBACK
VALID INPUT
tsu
tpd
CLK
th tco
COMBINATORIAL OUTPUT
REGISTERED OUTPUT
Combinatorial Output
1/ fmax (external fdbk)
Registered Output
INPUT or I/O FEEDBACK
tdis
OUTPUT
ten
CLK
1/
fmax (internal fdbk)
Input or I/O to Output Enable/Disable
REGISTERED FEEDBACK
tcf
tsu
fmax with Feedback
tw h
CLK
1/
tw l
fm a x
(w/o fdbk)
Clock Width
INPUT or I/O FEEDBACK DRIVING SP CLK
INPUT or I/O FEEDB ACK DRIVI NG AR
tsu
th
tspr
CLK
tarw
tco
REGISTERED OUTPUT
tarr
R E G I S T ER E D OUTPUT
tar
Synchronous Preset Asynchronous Reset
13
Specifications GAL22V10
fmax Descriptions
CL K
CLK
LOGIC ARR AY
R EG I S T E R
LOGIC ARRAY
REGISTER
ts u
tc o
fmax with External Feedback 1/(tsu+tco)
Note: fmax with external feedback is calculated from measured tsu and tco.
CLK
tcf tpd
fmax with Internal Feedback 1/(tsu+tcf)
Note: tcf is a calculated value, derived by subtracting tsu from the period of fmax w/internal feedback (tcf = 1/fmax - tsu). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combinatorial output is equal to tcf + tpd.
LOGIC ARRAY
REGISTER
tsu + th
fmax with No Feedback
Note: fmax with no feedback may be less than 1/(twh + twl). This is to allow for a clock duty cycle of other than 50%.
14
Specifications GAL22V10
Switching Test Conditions
Input Pulse Levels Input Rise and Fall Times D-4/-5/-7, C-5 D-10/-15/-20/-25 B & C-7/-10 B-15/-20/-25 3ns Input Timing Reference Levels Output Timing Reference Levels Output Load 10% - 90% 1.5V 1.5V See Figure
+1.45V
GND to 3.0V 1.5ns 10% - 90% 2.0ns 10% - 90%
GAL22V10D-4 Output Load Conditions (see figure below) Test Condition A B C Z to Active High at 1.9V Z to Active Low at 1.0V Active High to Z at 1.9V Active Low to Z at 1.0V R1 50 50 50 50 50 CL 50pF 50pF 50pF 50pF 50pF
3-state levels are measured 0.5V from steady-state active level. Output Load Conditions (except D-4) (see figure below) Test Condition A B C Active High Active Low Active High Active Low R1 300 300 300
+5V
TEST POINT R1 FROM OUTPUT (O/Q) UNDER TEST
R2 390 390 390 390 390
CL 50pF 50pF 50pF 5pF 5pF
Z0 = 50, CL*
R1
FROM OUTPUT (O/Q) UNDER TEST
TEST POINT
R2
C L*
*C L INCLUDES TEST FIXTURE AND PROBE CAPACITANCE
15
Specifications GAL22V10
Electronic Signature
An electronic signature (ES) is provided in every GAL22V10 device. It contains 64 bits of reprogrammable memory that can contain user-defined data. Some uses include user ID codes, revision numbers, or inventory control. The signature data is always available to the user independent of the state of the security cell. The electronic signature is an additional feature not present in other manufacturers' 22V10 devices. To use the extra feature of the user-programmable electronic signature it is necessary to choose a Lattice Semiconductor 22V10 device type when compiling a set of logic equations. In addition, many device programmers have two separate selections for the device, typically a GAL22V10 and a GAL22V10-UES (UES = User Electronic Signature) or GAL22V10-ES. This allows users to maintain compatibility with existing 22V10 designs, while still having the option to use the GAL device's extra feature. The JEDEC map for the GAL22V10 contains the 64 extra fuses for the electronic signature, for a total of 5892 fuses. However, the GAL22V10 device can still be programmed with a standard 22V10 JEDEC map (5828 fuses) with any qualified device programmer.
Output Register Preload
When testing state machine designs, all possible states and state transitions must be verified in the design, not just those required in the normal machine operations. This is because certain events may occur during system operation that throw the logic into an illegal state (power-up, line voltage glitches, brown-outs, etc.). To test a design for proper treatment of these conditions, a way must be provided to break the feedback paths, and force any desired (i.e., illegal) state into the registers. Then the machine can be sequenced and the outputs tested for correct next state conditions. The GAL22V10 device includes circuitry that allows each registered output to be synchronously set either high or low. Thus, any present state condition can be forced for test sequencing. If necessary, approved GAL programmers capable of executing test vectors perform output register preload automatically.
Input Buffers
GAL22V10 devices are designed with TTL level compatible input buffers. These buffers have a characteristically high impedance, and present a much lighter load to the driving logic than bipolar TTL devices. The input and I/O pins also have built-in active pull-ups. As a result, floating inputs will float to a TTL high (logic 1). However, Lattice Semiconductor recommends that all unused inputs and tri-stated I/O pins be connected to an adjacent active input, Vcc, or ground. Doing so will tend to improve noise immunity and reduce Icc for the device. (See equivalent input and I/O schematics on the following page.) Typical Input Current
I n p u t C u r r e n t (u A )
0
Security Cell
A security cell is provided in every GAL22V10 device to prevent unauthorized copying of the array patterns. Once programmed, this cell prevents further read access to the functional bits in the device. This cell can only be erased by re-programming the device, so the original configuration can never be examined once this cell is programmed. The Electronic Signature is always available to the user, regardless of the state of this control cell.
Latch-Up Protection
GAL22V10 devices are designed with an on-board charge pump to negatively bias the substrate. The negative bias is of sufficient magnitude to prevent input undershoots from causing the circuitry to latch. Additionally, outputs are designed with n-channel pullups instead of the traditional p-channel pullups to eliminate any possibility of SCR induced latching.
-20
-40 -60 0 1.0 2.0 3.0 4.0 5.0
Device Programming
GAL devices are programmed using a Lattice Semiconductorapproved Logic Programmer, available from a number of manufacturers (see the the GAL Development Tools section). Complete programming of the device takes only a few seconds. Erasing of the device is transparent to the user, and is done automatically as part of the programming cycle.
In p u t V o lt ag e ( V o lt s)
16
Specifications GAL22V10
Power-Up Reset
Vcc (min.)
Vcc
tsu
CLK
twl tpr
INTERNAL REGISTER Q - OUTPUT
Internal Register Reset to Logic "0"
ACTIVE LOW OUTPUT REGISTER
Device Pin Reset to Logic "1"
ACTIVE HIGH OUTPUT REGISTER
Device Pin Reset to Logic "0"
Circuitry within the GAL22V10 provides a reset signal to all registers during power-up. All internal registers will have their Q outputs set low after a specified time (tpr, 1s MAX). As a result, the state on the registered output pins (if they are enabled) will be either high or low on power-up, depending on the programmed polarity of the output pins. This feature can greatly simplify state machine design by providing a known state on power-up. The timing diagram for power-up is shown below. Because of the asyn-
chronous nature of system power-up, some conditions must be met to guarantee a valid power-up reset of the GAL22V10. First, the Vcc rise must be monotonic. Second, the clock input must be at static TTL level as shown in the diagram during power up. The registers will reset within a maximum of tpr time. As in normal system operation, avoid clocking the device until all input and feedback path setup times have been met. The clock must also meet the minimum pulse width requirements.
Input/Output Equivalent Schematics
PIN
Feedback PIN
Vcc
(Vref Typical = 3.2V)
Active Pull-up Circuit
Active Pull-up Circuit
(Vref Typical = 3.2V)
Vcc
ESD Protection Circuit
Vref
Vcc
Tri-State Control
Vcc
Vref
PIN
Data Output
PIN
ESD Protection Circuit
Feedback (To Input Buffer)
Typical Input
Typical Output
17
Specifications GAL22V10
GAL22V10D-4/-5/-7/-10L (PLCC): Typical AC and DC Characteristic Diagrams
Normalized Tpd vs Vcc
1.1 1.1
Normalized Tco vs Vcc
RISE FALL
Normalized Tsu vs Vcc
1.1
Normalized Tpd
1.05
RISE FALL
1.05
Normalized Tsu
Normalized Tco
1.05
RISE FALL
1
1
1
0.95
0.95
0.95
0.9 4.5 4.75 5 5.25 5.5
0.9 4.5 4.75 5 5.25 5.5
0.9 4.5 4.75 5 5.25 5.5
Supply Voltage (V)
Supply Voltage (V)
Supply Voltage (V)
Normalized Tpd vs Temp
1.3 1.2
Normalized Tco vs Temp
1.3
Normalized Tsu vs Temp
Normalized Tpd
Normalized Tco
1.2
1.1
Normalized T
RISE FALL
RISE FALL
1.2
RISE FALL
1.1
1.1
1
1
1
0.9
0.9 0.9 -55 -55 -25 0 25 50 75 100 125 0.8 -25 0 25 50 75 100 125 -55 -25 0 25 50 75 100 125
0.8
Temperature (deg. C)
Temperature (deg. C)
Temperature (deg. C)
0
Delta Tpd vs # of Outputs Switching
0
Delta Tco vs # of Outputs Switching
Delta Tpd (ns)
-0.1
Delta Tco (ns)
-0.1
-0.2
-0.2
RISE FALL
-0.3
RISE FALL
-0.3 1 2 3 4 5 6 7 8 9 10
-0.4 1 2 3 4 5 6 7 8 9 10
Number of Outputs Switching
Number of Outputs Switching
Delta Tpd vs Output Loading
12 12
Delta Tco vs Output Loading
Delta Tpd (ns)
4
Delta Tco (ns)
8
RISE FALL
8
RISE FALL
4
0
0
-4 0 50 100 150 200 250 300
-4 0 50 100 150 200 250 300
Output Loading (pF)
Output Loading (pF)
18
Specifications GAL22V10
GAL22V10D-4/-5/-7/-10L (PLCC): Typical AC and DC Characteristic Diagrams
Vol vs Iol
0.6 4
Voh vs Ioh
3.95 3.85 3 3.75
Voh vs Ioh
Voh (V)
Voh (V)
0.4
Vol (V)
3.65 3.55 3.45 3.35 3.25
2
0.2 1
0 0 5 10 15 20 25 30 35 40
0 0 5 10 1 5 2 0 2 5 3 0 3 5 4 0 4 5 50 55 60
3.15 0.00
1.00
2.00
3.00
4.00
5.00
Iol (mA) Normalized Icc vs Vcc
1.2 1.3 1.2
Ioh(mA) Normalized Icc vs Temp
1.2
Ioh(mA) Normalized Icc vs Freq
Normalized Icc
Normalized Icc
1.1 1 0.9 0.8
Normalized Icc
-25 0 25 50 88 100 125
1.1
1.15
1.1
1
1.05
0.9
1
0.8 4.5
4.75
5
5.25
5.5
0.7 -55
0.95 1 15 25 50 75 1 00
Supply Voltage (V)
Temperature (deg. C)
Frequency (MHz)
Delta Icc vs Vin (1 input)
6 5 0 20 40
Input Clamp (Vik)
Delta Icc (mA)
4 3 2 1
Iik (mA)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
60 80 100
0 -3 -2.5 -2 -1.5 -1 -0.5 1
Vin (V)
Vik (V)
19
Specifications GAL22V10
GAL22V10D-7/10L (PDIP): Typical AC and DC Characteristic Diagrams
Normalized Tpd vs Vcc
1.1 1.1
Normalized Tco vs Vcc
1.2
Normalized Tsu vs Vcc
Normalized Tpd
1.05
RISE FALL
Normalized Tco
1.05
Normalized Tsu
RISE FALL
1.1
RISE FALL
1
1
1
0.95
0.9
0.9 4.5 4.75 5 5.25 5.5
0.95 4.5 4.75 5 5.25 5.5
0.8 4.5 4.75 5 5.25 5.5
Supply Voltage (V) Normalized Tpd vs Temp
1.3 1.2
Supply Voltage (V) Normalized Tco vs Temp
1.3
Supply Voltage (V) Normalized Tsu vs Temp
1.2
Normalized Tpd
Normalized Tco
1.1
Normalized Tsu
RISE FALL
1.1
RISE FALL
1.2
RISE FALL
1.1
1
1
1
0.9
0.9
0.9
0.8 -55
-25
0
25
50
75
100
125
0.8 -55
-25
0
25
50
75
100
125
0.8 -55
-25
0
25
50
75
100
125
Temperature (deg. C)
Temperature (deg. C)
Delta Tpd vs # of Outputs Switching
0 -0.1 -0.2
Temperature (deg. C)
0 -0.1 -0.2
Delta Tco vs # of Outputs Switching
Delta Tpd (ns)
-0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 1 2 3 4 5 6 7 8 9 10
Delta Tco (ns)
-0.3
-0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 1 2 3 4 5 6 7 8 9 10
RISE FALL
RISE FALL
Number of Outputs Switching Delta Tpd vs Output Loading
12 12
Number of Outputs Switching Delta Tco vs Output Loading
Delta Tpd (ns)
4
Delta Tco (ns)
8
RISE FALL
8
RISE FALL
4
0
0
-4 0 50 100 150 200 250 300
-4 0 50 100 150 200 250 300
Output Loading (pF)
Output Loading (pF)
20
Specifications GAL22V10
GAL22V10D-7/10L (PDIP): Typical AC and DC Characteristic Diagrams
Vol vs Iol
0.5 4
Voh vs Ioh
3.8 3.7
Voh vs Ioh
0.4 3
3.6 3.5
2
Voh (V)
0 5 10 15 20 25 30 35 40
Vol (V)
0.3
Voh (V)
3.4 3.3 3.2 3.1 3 2.9
0.2
1 0.1
0 0 5 10 15 20 25 30
0
2.8 0.00
1.00
2.00
3.00
4.00
5.00
Iol (mA) Normalized Icc vs Vcc
1.15 1.1 1.3 1.2
Ioh (mA) Normalized Icc vs Temp
1.2
Ioh (mA) Normalized Icc vs Freq
1.15
Normalized Icc
Normalized Icc
1.05 1 0.95 0.9 0.85 4.5 4.75 5 5.25 5.5
1.1 1 0.9 0.8 0.7 -55
Normalized Icc
0 25 100
1.1
1.05
1
0.95 1 15 25 50 75 100
Supply Voltage (V)
Temperature (deg. C)
Frequency (MHz)
Delta Isb vs Vin (1 input)
10 9 8 0 10 20 30
Input Clamp (Vik)
Delta Icc (mA)
7
Iik (mA)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
6 5 4 3 2 1 0
40 50 60 70 80 90 100 -2.5 -2 -1.5 -1 -0.5 0
Vin (V)
Vik (V)
21
Specifications GAL22V10
GAL22V10D-10Q and Slower (L & Q): Typical AC and DC Characteristic Diagrams
Normalized Tpd vs Vcc
1.1 1.15
Normalized Tco vs Vcc
1.2
Normalized Tsu vs Vcc
Normalized Tpd
Normalized Tco
Normalized Tsu
1.05
RISE FALL
1.1
RISE FALL
1.1
RISE FALL
1.05
1
1
1
0.95
0.95
0.9
0.9 4.5
4.75
5
5.25
5.5
0.9 4.5
4.75
5
5.25
5.5
0.8 4.5
4.75
5
5.25
5.5
Supply Voltage (V)
Supply Voltage (V)
Supply Voltage (V)
Normalized Tpd vs Temp
1.3 1.2 1.1 1 0.9 0.8 -55 1.3
Normalized Tco vs Temp
1.45 1.35
Normalized Tsu vs Temp
Normalized Tpd
Normalized Tco
Normalized Tsu
RISE FALL
1.2
RISE FALL
1.25 1.15 1.05 0.95 0.85
RISE FALL
1.1
1
0.9
-25
0
25
50
75
100
125
Temperature (deg. C)
0.8 -55
-25
0
25
50
75
100
1 25
0.75 -55
-25
0
25
50
75
100
1 25
Temperature (deg. C)
Temperature (deg. C)
0
Delta Tpd vs # of Outputs Switching
0
Delta Tco vs # of Outputs Switching
Delta Tpd (ns)
-0.4
Delta Tco (ns)
RISE FALL
-0.8
-0.4
RISE FALL
-0.8
-1.2 1 2 3 4 5 6 7 8 9 10
-1.2 1 2 3 4 5 6 7 8 9 10
Number of Outputs Switching Delta Tpd vs Output Loading
20 16 20
Number of Outputs Switching Delta Tco vs Output Loading
Delta Tpd (ns)
12 8 4 0 -4 -8 0 50
Delta Tco (ns)
RISE FALL
16 12 8 4 0 -4
RISE FALL
100
150
200
250
3 00
0
50
100
150
200
250
3 00
Output Loading (pF)
Output Loading (pF)
22
Specifications GAL22V10
GAL22V10DQ-10 and Slower (L & Q): Typical AC and DC Characteristic Diagrams
Vol vs Iol
0.6 4.5 4 3.5 0.4 3 4
Voh vs Ioh
4.5
Voh vs Ioh
Voh (V)
2.5 2 1.5 1 0.5
Voh (V)
0 20 40 60
Vol (V)
3.5
0.2
3
0 0 5 10 15 20 25 30 35 40
0
2.5 0.00
1.00
2.00
3.00
4.00
5.00
Iol (mA) Normalized Icc vs Vcc
1.2 1.35 1.25
Ioh (mA) Normalized Icc vs Temp
1.4 1.3 1.2 1.1 1 0.9 -25 0 25 50 88 100 1 25 1 15
Ioh (mA) Normalized Icc vs Freq
Normalized Icc
Normalized Icc
1.1
1.15 1.05 0.95 0.85
1
0.9
0.8 4.5
4.75
5
5.25
5.5
0.75 -55
Normalized Icc
25
50
75
1 00
Supply Voltage (V)
Temperature (deg. C)
Frequency (MHz)
Delta Icc vs Vin (1 input)
7 6 0 10 20
Input Clamp (Vik)
Delta Icc (mA)
5 4 3 2
30
Iik (mA)
40 50 60 70
1 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
80 90 -2.5 -2 -1.5 -1 -0.5 0
Vin (V)
Vik (V)
23
Specifications GAL22V10
GAL22V10C-5/-7/-10: Typical AC and DC Characteristic Diagrams
Normalized Tpd vs Vcc
1.2 1.2
Normalized Tco vs Vcc
1.2
Normalized Tsu vs Vcc
Normalized Tpd
Normalized Tco
1.1
Normalized Tsu
PT H->L PT L->H
1
RISE 1.1 FALL
PT H->L
1.1
PT L->H
1
1
0.9
0.9
0.9
0.8 4.50 4.75 5.00 5.25 5.50
0.8 4.50 4.75 5.00 5.25 5.50
0.8 4.50 4.75 5.00 5.25 5.50
Supply Voltage (V)
Supply Voltage (V)
Supply Voltage (V)
Normalized Tpd vs Temp
1.3 1.3
Normalized Tco vs Temp
1.4
Normalized Tsu vs Temp
Normalized Tpd
Normalized Tco
Normalized Tsu
1.2 1.1 1 0.9 0.8 0.7 -55 -25
PT H->L PT L->H
1.2 1.1 1 0.9 0.8 0.7
RISE FALL
1.3 1.2 1.1 1 0.9 0.8 0.7
PT H->L PT L->H
0
25
50
75
100
125
-55
-25
0
25
50
75
100
125
-55
-25
0
25
50
75
100
125
Temperature (deg. C)
Temperature (deg. C)
Temperature (deg. C)
Delta Tpd vs # of Outputs Switching
0 0
Delta Tco vs # of Outputs Switching
Delta Tpd (ns)
Delta Tco (ns)
-0.25 -0.5 -0.75 -1 -1.25 -1.5 1 2 3 4 5 6 7 8 9 10
-0.25
-0.5
RISE FALL
RISE
-0.75
FALL
-1 1 2 3 4 5 6 7 8 9 10
Number of Outputs Switching
Number of Outputs Switching
Delta Tpd vs Output Loading
12 10 12
Delta Tco vs Output Loading
Delta Tpd (ns)
Delta Tco (ns)
RISE FALL
10 8 6 4 2 0 -2
RISE FALL
8 6 4 2 0 -2 0 50
100
150
200
250
300
0
50
100
150
200
250
300
Output Loading (pF)
Output Loading (pF)
24
Specifications GAL22V10
GAL22V10C-5/-7/-10: Typical AC and DC Characteristic Diagrams
Vol vs Iol
3 2.5 5 4
Voh vs Ioh
4
Voh vs Ioh
3.75
Voh (V)
3 2 1 0
1.5 1 0.5 0 0.00 20.00 40.00 60.00 80.00 100.00
Voh (V)
10.00 20.00 30.00 40.00 50.00 60.00
Vol (V)
2
3.5
3.25
3 0.00 1.00 2.00 3.00 4.00
0.00
Iol (mA)
Ioh(mA)
Ioh(mA)
Normalized Icc vs Vcc
1.20 1.2
Normalized Icc vs Temp
1.30
Normalized Icc vs Freq.
Normalized Icc
Normalized Icc
1.10
1.1
Normalized Icc
-55 -25 0 25 50 75 100 125
1.20
1.00
1
1.10
0.90
0.9
1.00
0.80 4.50 4.75 5.00 5.25 5.50
0.8
0.90 0 25 50 75 100
Supply Voltage (V)
Temperature (deg. C)
Frequency (MHz)
Delta Icc vs Vin (1 input)
10
Input Clamp (Vik)
0 10
Delta Icc (mA)
8
20
6 4 2 0
Iik (mA)
30 40 50 60 70 -2.50 -2.00 -1.50 -1.00 -0.50 0.00
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
Vin (V)
Vik (V)
25
Specifications GAL22V10
GAL22V10B-7/-10/-15/-25L: Typical AC and DC Characteristic Diagrams
Normalized Tpd vs Vcc
1.2 1.2
Normalized Tco vs Vcc
1.2
Normalized Tsu vs Vcc
Normalized Tpd
Normalized Tco
1.1
Normalized Tsu
PT H->L PT L->H
1
RISE 1.1 FALL
PT H->L
1.1
PT L->H
1
1
0.9
0.9
0.9
0.8 4.50 4.75 5.00 5.25 5.50
0.8 4.50 4.75 5.00 5.25 5.50
0.8 4.50 4.75 5.00 5.25 5.50
Supply Voltage (V)
Supply Voltage (V)
Supply Voltage (V)
Normalized Tpd vs Temp
1.3 1.3
Normalized Tco vs Temp
1.4
Normalized Tsu vs Temp
Normalized Tpd
Normalized Tco
Normalized Tsu
1.2 1.1 1 0.9 0.8 0.7
PT H->L PT L->H
1.2 1.1 1 0.9 0.8 0.7
RISE FALL
1.3 1.2 1.1 1 0.9 0.8 0.7
PT H->L PT L->H
0
0
-55
-25
25
50
75
100
100
125
125
0
100
Temperature (deg. C)
Temperature (deg. C)
Temperature (deg. C)
Delta Tpd vs # of Outputs Switching
0 0
Delta Tco vs # of Outputs Switching
Delta Tpd (ns)
-0.5
Delta Tco (ns)
-0.5
-1
-1
RISE
-1.5
RISE
-1.5
FALL
-2 1 2 3 4 5 6 7 8 9 10
FALL
-2 1 2 3 4 5 6 7 8 9 10
Number of Outputs Switching
Number of Outputs Switching
Delta Tpd vs Output Loading
12 10 12
Delta Tco vs Output Loading
Delta Tpd (ns)
Delta Tco (ns)
RISE FALL
10 8 6 4 2 0 -2
RISE FALL
8 6 4 2 0 -2 0 50
100
150
200
250
300
0
50
100
150
200
250
300
Output Loading (pF)
Output Loading (pF)
26
125
-55
-25
-55
-25
25
50
75
25
50
75
Specifications GAL22V10
GAL22V10B-7/-10/-15/-25L: Typical AC and DC Characteristic Diagrams
Vol vs Iol
3 2.5 5 4
Voh vs Ioh
4.5
Voh vs Ioh
4.25
Voh (V)
3 2 1 0
1.5 1 0.5 0 0.00 20.00 40.00 60.00 80.00 100.00
Voh (V)
10.00 20.00 30.00 40.00 50.00 60.00
Vol (V)
2
4
3.75
3.5 0.00 1.00 2.00 3.00 4.00
0.00
Iol (mA)
Ioh(mA)
Ioh(mA)
Normalized Icc vs Vcc
1.20 1.2
Normalized Icc vs Temp
1.20
Normalized Icc vs Freq.
Normalized Icc
Normalized Icc
1.10
1.1
Normalized Icc
-55 -25 0 25 50 75 100 125
1.10
1.00
1
1.00
0.90
0.9
0.90
0.80 4.50 4.75 5.00 5.25 5.50
0.8
0.80 0 25 50 75 100
Supply Voltage (V)
Temperature (deg. C)
Frequency (MHz)
Delta Icc vs Vin (1 input)
10
Input Clamp (Vik)
0 10 20
Delta Icc (mA)
8 6 4 2 0
Iik (mA)
30 40 50 60 70 80 90 100 -2.00 -1.50 -1.00 -0.50 0.00
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
Vin (V)
Vik (V)
27
Specifications GAL22V10
GAL22V10B-15/-25Q: Typical AC and DC Characteristic Diagrams
Normalized Tpd vs Vcc
1.2 1.2
Normalized Tco vs Vcc
1.2
Normalized Tsu vs Vcc
Normalized Tpd
Normalized Tco
1.1
Normalized Tsu
1.1
1.1
1
1
1
0.9
0.9
0.9
0.8 4.50 4.75 5.00 5.25 5.50
0.8 4.50 4.75 5.00 5.25 5.50
0.8 4.50 4.75 5.00 5.25 5.50
Supply Voltage (V)
Supply Voltage (V)
Supply Voltage (V)
Normalized Tpd vs Temp
1.3 1.3
Normalized Tco vs Temp
1.4
Normalized Tsu vs Temp
Normalized Tpd
Normalized Tco
Normalized Tsu
0
1.2 1.1 1 0.9 0.8 0.7
0 100 125 -55 -25 25 50 75
1.2 1.1 1 0.9 0.8 0.7
100 125 -55 -25 25 50 75
1.3 1.2 1.1 1 0.9 0.8 0.7
0 100 125 -55 -25 25 50 75
Temperature (deg. C)
Temperature (deg. C)
Temperature (deg. C)
Delta Tpd vs # of Outputs Switching
0 0
Delta Tco vs # of Outputs Switching
Delta Tpd (ns)
-0.25
Delta Tco (ns)
1 2 3 4 5 6 7 8 9 10
-0.5
-0.5
-1
-0.75
-1.5
-1
-2 1 2 3 4 5 6 7 8 9 10
Number of Outputs Switching
Number of Outputs Switching
Delta Tpd vs Output Loading
12 10 14
Delta Tco vs Output Loading
RISE
12
RISE FALL
Delta Tpd (ns)
Delta Tco (ns)
8 6 4 2 0 -2 0 50
FALL
10 8 6 4 2 0 -2 0 50
100
150
200
250
300
100
150
200
250
300
Output Loading (pF)
Output Loading (pF)
28
Specifications GAL22V10
GAL22V10B-15/-25Q: Typical AC and DC Characteristic Diagrams
Vol vs Iol
1 0.8 5 4
Voh vs Ioh
4
Voh vs Ioh
3.75
Voh (V)
0.6 0.4 0.2 0 0.00 20.00 40.00
3 2 1 0
0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00
Voh (V)
Vol (V)
3.5
3.25
3 0.00 1.00 2.00 3.00 4.00
Iol (mA)
Ioh(mA)
Ioh(mA)
Normalized Icc vs Vcc
1.20 1.3
Normalized Icc vs Temp
2.00
Normalized Icc vs Freq.
Normalized Icc
Normalized Icc
1.10
1.1 1 0.9 0.8 0.7
Normalized Icc
-55 -25 0 25 75 100 125
1.2
1.80 1.60 1.40 1.20 1.00 0.80 0 25 50 75 100
1.00
0.90
0.80 4.50 4.75 5.00 5.25 5.50
Supply Voltage (V)
Temperature (deg. C)
Frequency (MHz)
Delta Icc vs Vin (1 input)
10
Input Clamp (Vik)
0 10
Delta Icc (mA)
8 6 4 2 0
20
Iik (mA)
0.20 0.70 1.20 1.70 2.20 2.70 3.20 3.70
30 40 50 60 70 80 90 -2.00 -1.50 -1.00 -0.50 0.00
Vin (V)
Vik (V)
29


▲Up To Search▲   

 
Price & Availability of 22V10

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X